Intermediate strain rate behaviour of cancellous bone: Links between microstructural and mechanical properties

نویسندگان

  • Marianne Prot
  • Trevor Cloete
  • Dominique Saletti
  • Sebastien Laporte
چکیده

Relationships between the micro-architecture description of cancellous bone, obtained from medical imaging, and its mechanical properties can be used to assess the compression fracture risk at high and low strain rate. This study extends the rupture prediction to the intermediate strain rate regime. The micro-architecture description was obtained with a CT-scan, for which geometry, topology, connectivity and anisotropy parameters were computed and compared to mechanical identified parameters in order to confirm their usefulness. Three strain rates were investigated: 1/s, 10/s and 100/s using two different devices: a Wedge-Bar apparatus and a conventional split Hopkinson pressure bar implemented with a Cone-in-Tube striker and a tandem momentum trap. This setup provides a constant strain rate loading with routine specimen recovery allowing the fracture zone to be investigated. This study reveals that a transition in the response behaviour occurred in the intermediate regime and confirms the significant porous organization influence through the regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Behavior and Microstructural Properties of Cancellous Bone

The aim of the presented study is to identify some properties of the dynamic behavior of the cancellous bone and to identify the link between this mechanical behavior and the microstructural properties. 7 cylinders of bovine cancellous bone (diameter 41 mm, thickness 14 mm) were tested in quasi static loading (0.001 s), 8 in dynamic loading (1000 s) and 10 in dynamic loading (1500 s) with a con...

متن کامل

Mutual associations among microstructural, physical and mechanical properties of human cancellous bone.

Previous studies have shown that low-density, rod-like trabecular structures develop in regions of low stress, whereas high-density, plate-like trabecular structures are found in regions of high stress. This phenomenon suggests that there may be a close relationship between the type of trabecular structure and mechanical properties. In this study, 160 cancellous bone specimens were produced fro...

متن کامل

Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone.

Cancellous bone microstructure is an important determinant of the mechanical integrity of vertebrae. The numerous microstructural parameters that have been studied extensively are generally represented as a single value obtained as an average over a sample. The range of the intra-sample variability of cancellous microstructure and its effect on the mechanical properties of bone are less well-un...

متن کامل

Neovascularization and mandibular condylar bone remodeling in adult rats under mechanical strain.

The present study was designed to explore the relationship between neovascularization, hypertrophic cartilage and the microstructural properties of cancellous bone in adult rat's condyle in response to mechanical strain produced by mandibular advancement.Seventy-eight 120-day-old female Sprague-Dawley rats were randomly allotted to six groups, nine animals in each experimental group according t...

متن کامل

Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores.

This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015